
Written Homework 4 Solutions

§ 8.5 #40: Note (
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To show this sum diverges, we will show that
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6= 0.

To find this limit, we let

y =

(
n

n + 1

)n+1

.

Note we want to show that limn→∞ y 6= 0. Taking the natural log on both sides gives
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Then we take the limit on both sides to get
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The right-hand limit is in the form 0
0 , so we can use L’Hospital’s Rule, and we get
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It follows that
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6= 0.

So the series diverges by the Divergence Test.
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Note
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So the series converges by the root test.

§ 8.5 #44: Note
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which is a convergent p-series. So the series converges by the comparison test.

§ 8.5 #46:

Method 1: We use the ratio test. Let
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.
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So the series converges by the ratio test.

Method 2: Let
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Note

∞∑
k=1

bk =

∞∑
k=1

(
2

e

)k

is a convergent geometric series, since 2
e < 1. Next, note
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= 1.



Since 0 < L <∞, by the limit comparison test, either both series converge or both diverge. Since∑
bk converges, so does

∑
ak.

§ 8.5 #52: Again, we use the ratio test. Let
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.

Note
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So the series converges by the ratio test.

§ 8.6 #12: We use the Alternating Series Test. Let

ak =
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k
.

Note
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<
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= ak, and

(2) lim
k→∞

ak = 0.

So, by the Alternating Series Test, the series converges.


