Written Homework 4 Solutions
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§ 8.5 #40: Note

To show this sum diverges, we will show that
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Note we want to show that lim,,_, . y # 0. Taking the natural log on both sides gives
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To find this limit, we let

Then we take the limit on both sides to get

lim lny = lim n
n—roo n—oo —_—
n+1

The right-hand limit is in the form %, so we can use L’Hospital’s Rule, and we get
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So
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It follows that
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So the series diverges by the Divergence Test.

§ 8.5 #42: Let
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So the series converges by the root test.

§ 8.5 #44: Note
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which is a convergent p-series. So the series converges by the comparison test.

§ 8.5 #46:

Method 1: We use the ratio test. Let
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So the series converges by the ratio test.

Method 2: Let
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is a convergent geometric series, since % < 1. Next, note

L= lim & —1.
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Since 0 < L < oo, by the limit comparison test, either both series converge or both diverge

> by, converges, so does Y ag.

§ 8.5 #52: Again, we use the ratio test. Let
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So the series converges by the ratio test.

§ 8.6 #12: We use the Alternating Series Test. Let
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So, by the Alternating Series Test, the series converges.
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