Text: Calculus for the Life Sciences, S. Schreiber, K. Smith and W. Getz, Wiley, 2014

#### **Section 1.1**

38. The x mg decreases to 0.32x during the first 24 hours; then 30 mg is added. After another 24 hours, the total 30 + 0.32x will decrease to 0.32(30 + 0.32x).

**42.** a. *D* : [0, *a*].

## **Section 1.2**

38. a. The slope is (110-97)/(500-100) = 13/400, and the equation is given by N = 13x/400 + (97 - 13/4) = 13x/400 + 375/4.

b. We obtain N = 103.5 for x = 300; we get  $x = 2500/13 \approx 192.3$ .

42. a. The data is close to linear.





**44.** a. t = A/10 (hours).

**b.** Here  $A = 1000 \cdot 0.03 = 30$  (mL), and we know t = A/10, thus t = 3 hours.

Text: Calculus for the Life Sciences, S. Schreiber, K. Smith and W. Getz, Wiley, 2014

#### **Section 1.4**

**34. a.** Once a day:  $N=20(1+5)^{365}$ , twice a day:  $N=20(1+5/2)^{730}$ , four times a day:  $N=(1+5/4)^{1460}$ 

**b.**  $n ext{ times a day: } 20(1+5/n)^{365n}$ .

c. The values approach  $20e^{1825}$ .

40. The size of the bacteria population is given by  $20(2)^{t/9.3}$ , where t is measured in hours. Thus after three days, the size is  $20(2)^{72/9.3} \approx 4281$  individuals.

**42.** a. If  $f(t) = b a^t$ , then substituting t = 0, we obtain 67.38 = b. At t = 1, 69.13 = 67.38a, so a = 69.13/67.38. Thus  $f(t) = 67.38(69.13/67.38)^t$ .

b. The quality of the fit is excellent.



c. The estimate is  $67.38(69.13/67.38)^{24} \approx 124.68$  (millions).

 ${\bf d}.$  The population size was 104.96 million.

#### Section 1.6

38. The doubling time can be found by solving  $2 = (1.026)^T$ . Take the natural logarithm of both sides and divide to obtain  $T = \ln 2 / \ln 1.026 \approx 27$  years.

**42.** a. We solve the equation  $Q_0/2 = Q_0(0.85)^t$ . Taking natural logarithms of

both sides (after dividing them by  $Q_0$ ) gives  $t = \ln(1/2)/\ln 0.85 \approx 4.27$  years.

b. We have to solve the equation  $Q_0/2 = Q_0 r^{100}$ , so  $r = {}^{100}\sqrt{1/2} \approx 0.993$ , which means the depletion rate is 0.7%.

Text: Calculus for the Life Sciences, S. Schreiber, K. Smith and W. Getz, Wiley, 2014

#### **Section 1.7**

**32.** a. 
$$a_1 = 500$$
,  $a_n = 0.2a_{n-1} + 500$ .

b. The values are  $500, 0.2 \cdot 500 + 500 = 600, 0.2 \cdot 600 + 500 = 620, 0.2 \cdot 620 + 500 = 624, 0.2 \cdot 624 + 500 = 624.8.$ 

c. The equilibrium is given by x = 0.2x + 500, which gives x = 500/0.8 = 625 mg.

**34.** a. First,  $a_1 = A$ . Then  $a_2 = (1-c)a_1 + A$ . Continuing,  $a_3 = (1-c)a_2 + A$ . We obtain that  $a_n = (1-c)a_{n-1} + A$ .

**b.** The equilibrium is the solution of x = (1 - c)x + A, which is x = A/c.

c. The equilibrium value is bigger than 2A when A/c > 2A; i.e. when c < 1/2.

36. The equilibria are given by the equation  $x = bxe^{-cx}$ , which is the same as  $x(1 - be^{-cx}) = 0$ . The product is zero if either x = 0 or  $1 - be^{-cx} = 0$ . The second equation gives  $x = \ln b/c$ . This is positive when b > 1. The figures show the cobweb diagrams for b = 0.9, b = 2.0, b = 8.0 and b = 20.0, if  $a_1 = 2$ , c = 1.0.





Text: Calculus for the Life Sciences, S. Schreiber, K. Smith and W. Getz, Wiley, 2014

