Assignment 12 (SOLUTION from Textbook Manual Solution)

Text: Calculus for the Life Sciences, S. Schreiber, K. Smith and W. Getz, Wiley, 2014

Section 6.1

- 9. We have to solve $2 = e^{0.64t}$; we obtain $t = \ln 2/0.64 \approx 1.083$ years.
- 13. We have to solve $1/2 = e^{-0.03t}$; we obtain $t = \ln(1/2)/(-0.03) \approx 23.1049$ centuries, or
- 17. We have to solve $0.1 = e^{-0.0025t}$; we obtain $t = \ln(0.1)/(-0.0025) \approx 921.03$ years.
- **29.** If the half-life is 5 days, then $N_0/2 = N_0 e^{-\lambda \cdot 5}$, thus $\lambda = (\ln 2)/5 \approx 0.1386$.

Section 6.2

- 19. Integrating both sides, we obtain $y = \sin t + C$.
- **21.** Separating the variables, $e^y dy = dt$, thus integration gives $e^y = t + C$ and then $y = \ln(t + C)$.
- **22.** Clearly, y = 1 is a solution. Separating the variables, (1/(y-1))dy = dt, thus integration gives $\ln(y-1) = t + \tilde{C}$ and then $y = 1 + Ce^t$.
- 23. Clearly, y = 0 is a solution. Separating the variables, (1/y)dy = 3xdx, thus integration gives $\ln y = 3x^2/2 + \tilde{C}$ and then $y = Ce^{3x^2/2}$.
- **29.** Separating the variables, $(1+y)^{-2}dy = dt$, thus integration gives -1/(1+y) = t + C. The initial condition shows that -1/(1+2) = 0 + C, thus C = -1/3 and then y = 1/(1/3 t) 1.

Assignment 12 (SOLUTION from Textbook Manual Solution)

Text: Calculus for the Life Sciences, S. Schreiber, K. Smith and W. Getz, Wiley, 2014

35. Separating the variables, we obtain 1/(y(y-1))dy = (1/(y-1)-1/y)dy = dt, thus integration gives $\ln |y-1| - \ln y = t + C$. The initial condition shows that 0 = 0 + C, thus C = 0 and then $\ln(|y-1|/y) = t$, which gives $y = 1/(1 + e^t)$.

Section 6.3

3. Using the result of Example 1, $1/2 = e^{-b \cdot (4/24)}$, thus $b = 6 \ln 2 \approx 4.1589$. Also, 0 = a - bV, thus $a = bV \approx 4.1589 \cdot 2.25 \cdot 10^5 \approx 935,700$.