

Quiz 1

MATH 172 Lab: Section 8

Lab Instructor (TA): Mohammed Kaabar

Student's Name: - Solution -

Student's ID:----

Note: This quiz covers only the area between curves.

Show your work and circle your answers. Neatness and organization count!

Question 1: (2 points) The figure below shows the graphs of $m_1 = 5 - x$ and $m_2 = x^2 - 7$ on the interval [-4,3].

Give a formula for the area between m_1 and m_2 on [-4,3]. **DO NOT EVALUATE THE INTEGRAL**.

Hint: You can write the area as either one integral or a sum of two integrals (both answers are correct).

$$5-X=x^{2}-7$$

$$x^{2}+x-7-5=0$$

$$x^{2}+x-12=0$$

$$(x+4)(x-3)=0$$

$$x=-4$$

$$x=3$$

$$A = \int [(5-x) - (x^2-7)] dx$$

$$A = \int [(5-x) - (x^2-7) dx + \int [(5-x) - (x^2-7) dx - 4] dx$$

$$A = \int ((5-x) - (x^2-7) dx + \int ((5-x) - (x^2-7) dx - 4] dx$$

Question 2: Find the area bounded by the functions $x = y^2 - 1$ and $x = 1 - y^2$.

a. (1 point) Find where the curves intersect.

$$y^{2} - 1 = 1 - y^{2}$$

$$y^{2} + y^{2} = 1 + 1$$

$$2y^{2} = 2$$

$$y^{2} = 1$$

 $\Rightarrow \boxed{y=1} \text{ or } \boxed{y=-1} \text{ thus, the curves intersect at} \\ b. (1 point) Sketch a graph to determine which function is on top.}$

c. (1 point) Set up the integral and find the area between the curves.

$$A = \int [(1-y^{2}) - (y^{2}-1)] dy = \int (1-y^{2}-y^{2}+1) dy =$$

$$= \int (1-2y^{2}+1) dy = \int (2-2y^{2}) dy = 2y - \frac{2y^{3}}{3}\Big|_{-1} =$$

$$= \left(2(1) - \frac{2(1)^{3}}{3}\right) - \left(2(-1) - \frac{2(-1)^{3}}{3}\right) = \left(2 - \frac{2}{3}\right) - \left(-2 + \frac{2}{3}\right) = \frac{8}{3}$$