Assignment 6 (SOLUTION from Textbook Manual Solution)

Text: Calculus for the Life Sciences, S. Schreiber, K. Smith and W. Getz, Wiley, 2014

Section 2.7

- **29.** f'(x) = 2x 1; this is negative when x < 1/2 and positive when x > 1/2, thus f is decreasing on $(-\infty, 1/2)$ and increasing on $(1/2, \infty)$.
- 49. Let d(t) be the distance of the sports car from the first patrol car. We can suppose that d(t) is a differentiable function. By the Mean Value Theorem, there is some time instance c between t = 0 and t = 1/12 (hours) such that its speed d'(c) = 1/12

$$(d(1/12) - d(0))/(1/12) = 6/(1/12) = 72$$
 miles per hour.

Section 3.3

- 19. Differentiate both sides with respect to x, using the chain rule: $2x + dy/dx = 3x^2 + 3y^2dy/dx$; solve for dy/dx to obtain $dy/dx = (3x^2 2x)/(1 3y^2)$.
- 22. Differentiate both sides with respect to x, using the chain rule: $-y^{-2}dy/dx 1/x^2 = 0$; solve for dy/dx to obtain $dy/dx = -y^2/x^2$.
- 23. Differentiate both sides with respect to x, using the chain rule. We obtain that 2(2x+3y)(2+3dy/dx)=0; solve for dy/dx to obtain dy/dx=-2/3.

Section 3.4

- 7. Using the product rule, $dy/dx = -e^{-x}\sin x + e^{-x}\cos x = e^{-x}(\cos x \sin x)$.
- 16. Using the quotient rule, we get f'(x) =

Assignment 6 (SOLUTION from Textbook Manual Solution)

Text: Calculus for the Life Sciences, S. Schreiber, K. Smith and W. Getz, Wiley, 2014

$$(\cos x(1-\cos x) - \sin x \sin x)/(1-\cos x)^2 = -1/(1-\cos x).$$

- 18. Using the chain rule, we obtain $y'(t) = 6t^2 \cos(2t^3 + 1)$.
- **24.** Using the quotient rule, we get $f'(x) = (-\sin x \sin x \cos x \cos x)/(\sin^2 x) = -1/\sin^2 x = -\csc^2 x$.
- **31.** $P'(t) = -100e^{-t}\sin t + 100e^{-t}\cos t$, so $P'(2) \approx -17.94$. The population is decreasing, at a rate about 18 fish per month.