

Handout 10

MATH 140 Lab: Section 1

Lab Instructor (TA): Mohammed Kaabar

Student's Name:
Student's ID:

Note: This handout contains a review for some important things in implicit differentiation.

- If you have a math problem and you need to use implicit differentiation by differentiating y with respect to x, you have to know the following (PLEASE go over them and read them carefully):
- First of all, PLEASE know that $y' = \frac{dy}{dx}$
- Second, read the following carefully, and take into your account that you have to multiply by y' when you differentiate y with respect to x.
 Implicit Derivatives:
 - 1- The derivative of y^3 is $3y^2y'$
 - 2- The derivative of y^2 is 2yy'
 - 3- The derivative of y is y'
 - 4- The derivative of e^y is $e^y \cdot v'$
 - 5- The derivative of e^{2y} is $2e^y \cdot y'$
 - 6- The derivative of sin(y) is $cos(y) \cdot y'$
 - 7- The derivative of $\ln(y)$ is $\frac{1}{y} \cdot y'$
 - 8- The derivative of $\ln(3y+1)$ is $\frac{3}{(3y+1)} \cdot y'$
 - 9- The derivative of $x \sin(y)$ is a <u>product rule</u> as follows: $\sin(y) + x\cos(y) \cdot y'$
 - 10- The derivative of $x e^y$ is a <u>product rule</u> as follows: $e^y + xe^y \cdot y'$
 - 11- The derivative of $\frac{x}{y^2+2}$ is a *quotient rule* as follows:

$$\frac{(y^2+2)(1) - (2yy')(x)}{(y^2+2)^2}$$

- 12- The derivative of tan(y) is: $sec^2 y \cdot y'$
- 13- The derivative of cot(y) is: $-csc^2 y \cdot y'$
- 14- The derivative of sec(y) is: $sec(y) tan(y) \cdot y'$
- 15- The derivative of csc(y) is: $-csc(y) cot(y) \cdot y'$

Dear Implicit
Differentiation

We know that you are scary!!!, and you are trying to scare us (non-mathematicians), but there is an interactive way of thinking that we can use it to overcome our fear from you!!!

The way is to read Kaabar handout and notes