

Mathematics 52 Study Guide 2 Fall 2016

Professor: Mohammed Kaabar Course ID: (27488) and (27501)

Student's Name: Student's ID:
Note: This study guide contains practice questions that are very useful for your preparation for
the second exam in <u>Elementary Algebra</u> .
Problem 1: Determine whether the following is <u>TRUE</u> or <u>FALSE</u> and if it is false <u>EXPLAIN</u> why:
a. Linear inequality is a mathematical expression that has an equal sign only.
b. Suppose that a solution for a linear inequality is $-2 < \psi \le 1$, then this solution in the interval notation can be written as $\{\psi -2 < \psi \le 1\}$.
c. Given that l_1 and l_2 are non-vertical lines. If $l_1 \parallel l_2$, then $m_1 \cdot m_2 = -1$.
d. Given that l_1 and l_2 are non-vertical lines. If l_1 and l_2 make an angle of 90°, then $m_1=m_2$.
e. It is possible to derive the slope-point form of equation of line using the slope formula by considering the slope passes through (x_1, y_1) and (x, y) .
f. $(apple + tomato)^2 = (apple)^2 + 2(tomato)(tomato) + (tomato)^2$
$\sigma (2 \text{ numnkins} - 3 \text{ sweet notatos})^2 = (4 \text{ numnkins})^2 -$

 $24(pumpkins)(sweet\ potatos) + 9(sweet\ potatos)^2$

h.
$$(2x + 4)^2 = 4(x + 2)^2$$

i.
$$(z^2 - 25)^{-2} = \frac{1}{((z-5)(z+5))^2}$$

j.
$$\frac{1^{1,000,000,000}}{0^0} = 1$$

Problem 2: Answer each of the following:

a.
$$\frac{1}{2^{-3}} = -----$$

b.
$$\frac{2^{0}-1}{2^{2-2}} = -----$$

c.
$$(-5^0) \cdot (1) = - - - - - -$$

d.
$$x^3y^{-1}z^2m^2ym^{-2}x^{-2} = -----$$

e.
$$\frac{\Psi^{-5}\Lambda^{-1}\Sigma^2}{\Lambda^1\Sigma^1\Pi^{-1}} = --------$$

f.
$$0^{-3} = - - - - - - - - - - - - -$$

g. What is the name of zero slope? -----

h. What is the name of undefined slope? -----

i.
$$5 \times 5 \times ... \times 5 = -------$$

j.
$$6^{-1} = - - - - - - - - - - - - - - - - -$$

Problem 3: Add the following:

a. +
$$\frac{(2x^7 + 4x^2 - 2x^0 + 2x^3 + 5x^6)}{(2x^0 - 12x^2 + 5x^8 + 4x^3 + 10x^2)}$$

Problem 4: Subtract the following:

$$-\frac{(-2x^5 + 3x^2 - 2x^0 + 1x^5 + 5x^6)}{(12x^0 - 12x^2 + 0x^7 + 3x^2 + 8x^4)}$$

Problem 5: Multiply the following:

$$(2x^{2} + 2x^{1} - 12x^{0})$$

$$(x^{2} + x + 1)$$

Problem 6: Divide the following using both long division and synthetic division methods:

$$\frac{x^3 - 1}{x - 1}$$

Problem 7: Solve each of the following:

a.
$$3z + 5 < -2 + 12z$$

b.
$$-10\zeta + 12 \le -2 - 2\zeta$$

c.
$$-12\delta^0 + 11^{\sqrt[3]{8}} < \left(-\frac{-31200.43}{-340123.2}\right)^{0+1-1} + 10\delta + \frac{2}{2^{-1}}\delta$$

d.
$$|5z + 2| = -4$$

e.
$$|5\varepsilon^{0-1+2} + 2\varepsilon^0 - 1| \ge -4^0 + \frac{1}{2^{-2}}$$

f.
$$(|5y + 12| + |5y - 5^2 + 15y^0|) \le -4$$

$$g.\frac{|25\tau+5|}{-2|25\tau+5|} = -4$$

Problem 8: Find the slope of the line that passes through each pair of points:

Part a: (-6,5) and (6,2)

Part b: (-1, -5) and (0,0)

Problem 9: Find the equation of the line with given properties:

a. A line passes through (0, -2) and is perpendicular to the line:

$$6x^0 + 12x^1 - 13y^0 + 5y^1 = -12.$$

b. A line passes through (1, -2) and has a horizontal slope.

Problem 10: Graph the following:

$$\frac{5y^2 + 25y}{(y+5)} = 2x - 12$$

We always learn from the challenging math problems.

Practice + Study = Success

Good Luck in Exam 2

Mohammed Kaabar

